C-89 Sphere Surface Area Conjecture 10.7

The surface area of a sphere is given by the equation...

$$SA = 4\pi r^2$$

Ex.

$$SA = 4\pi (4^2) = 64\pi \text{ in}^2 \approx 201.0619 \text{ in}^2$$

Be careful on 3A of a hemisphere!!

$$SA = \frac{1}{2} 4\pi r^2 + \pi r^2 \text{ for the bottom}$$

$$= 3\pi r^2 + 16\pi r^2 = 19\pi r^2 \approx 150.7964 \text{ in}^2$$

C-90 Dilation Similarity Conjecture 11.1

If one polygon is a dilated image of another polygon, then the polygons are similar.

C-91 AA Similarity Conjecture 11.2

If 2 angles of one Δ are \(\cong \) to 2 Δs of another Δ, then the Δs are similar.

Algebra Review 11: Solving Proportions

Use a cross-multiply technique based on the algebra that you multiply both sides by denom.

Use distributive property for (quantities) in numer. or denom.

Basic Ex.

\[
\frac{5}{8} = \frac{14.5}{x} \\
x = \frac{56}{5}
\]

Complex Ex.

\[
\frac{x+14}{20} = \frac{x+32}{100} \\
20(x+14) = 60(x+32) \\
20x + 280 = 60x + 960 \\
-40x = 680 \\
x = -17
\]

Trap. SMAL is 50% (or \(\frac{1}{2} \)) the size of Trap BIER \(\sim \) SMAL \(\sim \) BIER blc sides maintain same ratio and L's are all \(\cong \).
SSS Similarity Conjecture 11.2

If all 3 sides of one \(\triangle \) are proportional to the 3 sides of another \(\triangle \) then the 2 \(\triangle \)'s are **similar!!**

<table>
<thead>
<tr>
<th>A</th>
<th>2.2 cm</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>2 cm</td>
<td>E</td>
</tr>
<tr>
<td>2.4 cm</td>
<td>2 cm</td>
<td></td>
</tr>
</tbody>
</table>

\[\frac{B}{C} = \frac{2}{6} = \frac{2.2}{6.6} = \frac{2.4}{7.2} = \frac{1}{3} \] common ratio

\[\therefore \triangle AMK \sim \triangle EWN \text{ by SSS similarity} \]

SAS Similarity Conjecture 11.2

If 2 sides of 1 \(\triangle \) are proportional to 2 sides of another \(\triangle \) and the included \(\angle \)s are \(\cong \) then the \(\triangle \)'s are **similar!!**

\[\triangle ALH \sim \triangle FTB \text{ by SAS similarity} \]

- \(\frac{H}{L} = \frac{2}{3} \]
- \(\frac{F}{T} = \frac{2}{6} = \frac{1}{3} \text{ common ratio} \]
- \(\angle L \cong \angle T \)

Proportional Parts Conjecture 11.4

If 2 \(\triangle \)'s are \(\cong \), then the lengths of the corresponding altitudes, medians, and \(\angle \) bisectors are proportional to the lengths of the corresponding sides.

\[\frac{a}{b} = \frac{c}{d} = \frac{3}{6} = \frac{1}{2} \text{ for side ratios} \]

Angle Bisector/Opposite Side Conjecture 11.4

A bisector of an angle in a \(\triangle \) divides the opposite side into 2 segments whose lengths are in the same ratio as the lengths of the two sides forming the angle.

\[\frac{a}{b} = \frac{c}{d} \text{ same ratios} \]
C-96 Proportional Areas Conjecture 11.5

If corresponding side lengths of 2 similar polygons or the radii of 2 circles compare in the ratio \(m/n \), then their areas compare in the ratio \(m^2/n^2 \).

Example: If two similar figures have a side ratio of 2:5, and the larger figure has an area of 115 cm², then what is the area of the smaller?

Answer:

\[
\frac{m}{n} = \frac{2}{5} \quad \Rightarrow \quad \frac{4}{25} = \frac{x}{115} \quad \Rightarrow \quad 25x = 460 \quad \Rightarrow \quad x = 18.4 \text{ cm}^2
\]

C-97 Proportional Volumes Conjecture 11.6

If corresponding edge lengths (or radii or heights, etc...) of 2 similar solids compare in the ratio \(m/n \), then their volumes compare in the ratio \(m^3/n^3 \).

Example: The prisms are similar.

[Diagram of two prisms with measurements]

Answer:

\[
\frac{m}{n} = \frac{3}{5} \quad \Rightarrow \quad \frac{27}{125} = \frac{x}{210} \quad \Rightarrow \quad 27x = 26,250 \quad \Rightarrow \quad x = 972.2 \text{ in}^3
\]

C-98 Parallel/Proportionality Conjecture 11.7

If a line \(\parallel \) to one side of a \(\triangle \) passes thru the other two sides, then it divides the other 2 sides proportionally.

Conversely, if a line cuts 2 sides of a \(\triangle \) proportionally, then it is parallel to the third side.

[Diagram of triangle with parallel line cutting sides]

Lots of Ratios you can write...

\[
\frac{a}{b} = \frac{e}{d} \quad \frac{a+b}{e+d} = \frac{c}{f} \quad \frac{a+b}{c} = \frac{d}{f} \quad \frac{a}{b+tc} = \frac{d}{ef}
\]

C-99 Extended Parallel/Proportionality Conjecture 11.7

If two or more lines pass thru a sides of a \(\triangle \parallel \) to the third side, then they divide the two sides proportionally.

[Diagram of triangle with multiple parallel lines cutting sides]
<table>
<thead>
<tr>
<th>Valid Forms of Reasoning CH 11 Exploration</th>
<th>SOH CAH TOA Ratios 12.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERSE: If (p) then (q) (\rightarrow) If (q) then (p)</td>
<td>SOH CAH TOA is a memory device to remember trigonometry ratios.</td>
</tr>
<tr>
<td>INVERSE: If (\sim p) then (\sim q)</td>
<td>(\sin \theta = \text{opposite})</td>
</tr>
<tr>
<td>CONTRAPPOSITIVE: If (\sim q) then (\sim p)</td>
<td>(\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}) Only works for right triangles!!</td>
</tr>
<tr>
<td>ex) If you are at a movie then you are not at Starbucks.</td>
<td>(\tan \theta = \frac{\text{opposite}}{\text{adjacent}})</td>
</tr>
<tr>
<td>CONVERSE: If you are not at Starbucks then you are at a movie.</td>
<td>(\theta) is part of the Greek alphabet. It is commonly used for missing angles.</td>
</tr>
<tr>
<td>INVERSE: If you are not at a movie then you are at Starbucks</td>
<td>Finding Missing Sides w/ SOH CAH TOA 12.1</td>
</tr>
<tr>
<td>CONTRAPPOSITVE: If you are at Starbucks then you are not at a movie.</td>
<td>Finding Missing Angles w/ SOH CAH TOA 12.1</td>
</tr>
<tr>
<td>Always same as original F & F</td>
<td>By using trig ratios, you can find a missing side if you only have one side & one (\angle).</td>
</tr>
</tbody>
</table>

In a Right \(\triangle \)

Ex. 1)

\[
\sin 26^\circ = \frac{X}{50}
\]

\[50 \cdot \sin 26^\circ = X\]

\[X \approx 21.9185 \text{ cm}\]

Ex. 2)

\[
\cos 33^\circ = \frac{40}{X}
\]

\[X \cdot \cos 33^\circ = 40\]

\[X = \frac{40}{\cos 33^\circ}\]

\[X \approx 33.5468 \text{ cm}\]

\[
\tan \theta = \frac{13}{15}
\]

\[\theta = \tan^{-1} \left(\frac{13}{15}\right)\]

\[\theta \approx 40.9143^\circ\]